Dissociation of muscle and cortical response scaling to balance perturbation acceleration

Author:

Payne Aiden M.1ORCID,Hajcak Greg2,Ting Lena H.13

Affiliation:

1. The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia

2. Departments of Psychology and Biomedical Sciences, Florida State University, Tallahassee, Florida

3. Department of Rehabilitation, Division of Physical Therapy, Emory University, Atlanta, Georgia

Abstract

The role of cortical activity in standing balance is unclear. Here we tested whether perturbation-evoked cortical responses share sensory input with simultaneous balance-correcting muscle responses. We hypothesized that the acceleration-dependent somatosensory signals that drive the initial burst of the muscle automatic postural response also drive the simultaneous perturbation-evoked cortical N1 response. We measured in healthy young adults ( n = 16) the initial burst of the muscle automatic postural response (100–200 ms), startle-related muscle responses (100–200 ms), and the perturbation-evoked cortical N1 potential, i.e., a negative peak in cortical EEG activity (100–200 ms) over the supplementary motor area. Forward and backward translational support-surface balance perturbations were applied at four levels of acceleration and were unpredictable in timing, direction, and acceleration. Our results from averaged and single-trial analyses suggest that although cortical and muscle responses are evoked by the same perturbation stimulus, their amplitudes are independently modulated. Although both muscle and cortical responses increase with acceleration, correlations between single-trial muscle and cortical responses were very weak. Furthermore, across subjects, the scaling of muscle responses to acceleration did not correspond to scaling of cortical responses to acceleration. Moreover, we observed a reduction in cortical response amplitude across trials that was related to a reduction in startle-related—but not balance-correcting—muscle activity. Therefore, cortical response attenuation may be related to a reduction in perceived threat rather than motor adaptation or changes in sensory inflow. We conclude that the cortical N1 reflects integrated sensory inputs simultaneously related to brain stem-mediated balance-correcting muscle responses and startle reflexes. NEW & NOTEWORTHY Reactive balance recovery requires sensory inputs to be transformed into appropriate balance-correcting motor responses via brain stem circuits; these are accompanied by simultaneous and poorly understood cortical responses. We used single-trial analyses to dissociate muscle and cortical response modulation with perturbation acceleration. Although muscle and cortical responses share sensory inputs, they have independent scaling mechanisms. Attenuation of cortical responses with experience reflected attenuation of brain stem-mediated startle responses rather than the amplitude of balance-correcting motor responses.

Funder

HHS | National Institutes of Health (NIH)

National Science Foundation (NSF)

Georgia Tech Neural Engineering Center

Residential Care Facilities for the Elderly Authority of Fulton County

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3