Neural saccadic response estimation during natural viewing

Author:

Dandekar Sangita1,Privitera Claudio2,Carney Thom12,Klein Stanley A.1324

Affiliation:

1. Vision Science Graduate Program,

2. School of Optometry,

3. Helen Wills Neuroscience Institute,

4. Department of Bioengineering, University of California, Berkeley, California

Abstract

Studying neural activity during natural viewing conditions is not often attempted. Isolating the neural response of a single saccade is necessary to study neural activity during natural viewing; however, the close temporal spacing of saccades that occurs during natural viewing makes it difficult to determine the response to a single saccade. Herein, a general linear model (GLM) approach is applied to estimate the EEG neural saccadic response for different segments of the saccadic main sequence separately. It is determined that, in visual search conditions, neural responses estimated by conventional event-related averaging are significantly and systematically distorted relative to GLM estimates due to the close temporal spacing of saccades during visual search. Before the GLM is applied, analyses are applied that demonstrate that saccades during visual search with intersaccadic spacings as low as 100–150 ms do not exhibit significant refractory effects. Therefore, saccades displaying different intersaccadic spacings during visual search can be modeled using the same regressor in a GLM. With the use of the GLM approach, neural responses were separately estimated for five different ranges of saccade amplitudes during visual search. Occipital responses time locked to the onsets of saccades during visual search were found to account for, on average, 79 percent of the variance of EEG activity in a window 90–200 ms after the onsets of saccades for all five saccade amplitude ranges that spanned a range of 0.2–6.0 degrees. A GLM approach was also used to examine the lateralized ocular artifacts associated with saccades. Possible extensions of the methods presented here to account for the superposition of microsaccades in event-related EEG studies conducted in nominal fixation conditions are discussed.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3