Author:
Shibuya Satoshi,Ohki Yukari
Abstract
Using transcranial magnetic stimulation (TMS), we examined whether sensory input from a finger affects activity of the ipsilateral primary motor cortex (M1) when human subjects hold a virtual object bimanually and whether this ipsilateral activation varies under different contexts. Subjects used both index fingers to hold two plates, which were subjected to unpredictable pulling loads from torque motors. Loads were delivered in a random sequence to either plate or concurrently to both, although the latter occurred most frequently. Finger forces vertical to the plates and surface electromyographs from the first dorsal interosseous muscles were recorded bilaterally during the task. TMS was sometimes applied over the finger area of the left M1 at variable times relative to load onset to examine cortical excitability. Strength of TMS was set around the active motor threshold of the right finger muscle while subjects waited for loading to the handheld plates. When one plate was singly loaded, the M1 contralateral to the loaded finger was activated, causing automatic force increases in the finger. In addition, the ipsilateral M1 was activated during such loading, associated with transient force increases in the contralateral nonloaded finger. Activations in the ipsilateral M1 were also observed during concurrent loading, when activations were stronger than those following single loading of the contralateral plate. Ipsilateral activations weakened when concurrent loading was less frequent. These results suggest interactions between bilateral sensorimotor cortices during bimanual coordinated movements, with strength varying by context.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献