Stimulus Induced Desynchronization of Human Auditory 40-Hz Steady-State Responses

Author:

Ross B.,Herdman A. T.,Pantev C.

Abstract

The hypothesis that gamma-band oscillations are related to the representation of an environmental scene in the cerebral cortex after binding of corresponding perceptual elements is currently under discussion. One question is how the sensory system reacts to a fast change in the scene if perceptual elements are rigidly bound together. A reset of the gamma-band oscillation forced by a change in sensory input may dissolve the binding, which then would be re-established for the new sensation. We studied the reset of gamma-band oscillations on the 40-Hz auditory steady-state responses (ASSR) by means of whole-head magnetoencephalography (MEG). The rhythm of 40-Hz AM of a 500-Hz tone evoked the ASSR, and a short noise burst served as a concurrent stimulus. Possible direct interactions of the auditory stimuli were excluded by presenting the noise impulse in a different frequency channel (2,000–3,000 Hz) to the contralateral ear. The concurrent stimulus induced a considerable decrement in the amplitude of ASSR, which was localized in primary auditory cortices. This decrement lasted 250 ms and was significantly longer than the duration of the transient gamma-band response evoked by the noise burst. Thus it could not be explained by any linear superimposition of the responses. The time courses of ASSR amplitude and phase during recovery from the decrement resembled those after stimulus onset, indicating that a new ASSR was built up after the resetting stimulus. The results are discussed as reset of oscillations in human thalamocortical networks.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference62 articles.

1. Oscillatory gamma activity in humans: a possible role for object representation

2. Phase shift detection in thalamocortical oscillations using magnetoencephalography in humans

3. Buus S and Florentine M. Gap detection in normal and impaired listeners: the effect of level and frequency. In: Time Resolution in Auditory Systems, edited by Michelsen A. Berlin: Springer, 1985, p. 159–179.

4. deBoer E. Auditory time constants: a paradox? In: Time Resolution in Auditory Systems, edited by Michelsen A. Berlin: Springer, 1985, p. 141–158.

5. Temporal coding in the visual cortex: new vistas on integration in the nervous system

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3