Affiliation:
1. Department of Physiology and
2. Cognitive and Molecular Research Institute of Brain Disease, Kurume University School of Medicine, Kurume, Japan
Abstract
Intracellular recordings were made from rat hippocampal CA1 neurons in rat brain slice preparations to investigate whether cAMP-dependent protein kinase (PKA) and calcium/phospholipid-dependent protein kinase C (PKC) contribute to the membrane dysfunction induced by oxygen and glucose deprivation (OGD). Superfusion of oxygen- and glucose-deprived medium produced a rapid depolarization ∼5 min after the onset of the superfusion. When oxygen and glucose were reintroduced immediately after the rapid depolarization, the membrane depolarized further (persistent depolarization) and reached 0 mV after 5 min from the reintroduction. The pretreatment of the slice preparation with PKA inhibitors, H-89 and Rp-cAMPS, and an adenylate cyclase inhibitor, SQ 22, 536, significantly restored the membrane toward the preexposure potential level after the reintroduction of oxygen and glucose in a concentration-dependent manner. On the other hand, a phospholipase C inhibitor, U73122, a PKC inhibitor, GF109203X, and a nonselective protein kinase inhibitor, staurosporine, also significantly restored the membrane after the reintroduction. Moreover, an inositol-1,4,5-triphosphate receptor antagonist, 2-aminoethyl diphenylborinate, and calmodulin inhibitors, trifluoperazine and W-7, significantly restored the membrane after the reintroduction, while neither an α-subunit-selective antagonist for stimulatory G protein, NF449, a Ca2+/calmodulin-dependent kinase II inhibitor, KN-62, nor a myosin light chain kinase inhibitor, ML-7, significantly restored the membrane after the reintroduction. These results suggest that the activation of PKA and/or PKC prevents the recovery from the persistent depolarization produced by OGD. The Ca2+/calmodulin-stimulated adenylate cyclase may contribute to the activation of PKA.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience