Pituitary adenylate cyclase-activating polypeptide stimulates cholecystokinin secretion in STC-1 cells

Author:

Chang C. H.1,Chey W. Y.1,Braggins L.1,Coy D. H.1,Chang T. M.1

Affiliation:

1. Department of Medicine, University of Rochester School of Medicine andDentistry, New York 14642, USA.

Abstract

Secretion of cholecystokinin (CCK) from the endocrine cells of small intestinal mucosa and the murine intestinal tumor cell line STC-1 is known to involve both adenosine 3',5'-cyclic monophosphate (cAMP)-and Ca(2+)-dependent signal transduction pathways. However, the endogenous stimulant(s) that acts through the cAMP-dependent cascade has not been identified. We determined the effect of pituitary adenylate cyclase-activating polypeptide (PACAP) on CCK secretion and cAMP production and its interaction with other CCK secretagogues in STC-1 cells. At concentrations > 10 nM, PACAP-27 stimulated the release of large intestinal CCK from STC-1 cells in a time- and dose-dependent manner. The stimulatory effect of PACAP-27 was enhanced by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). PACAP-27, PACAP-38, and vasoactive intestinal polypeptide (VIP), with or without IBMX, were equally effective and potent to elicit CCK release with similar half-maximal doses and maximal levels of stimulation. Both forms of PACAP and VIP stimulated a transient but not significant increase in the cellular cAMP level. In the presence of IBMX, all three peptides increased significantly the cellular cAMP level between 2 and 5 min, but PACAP produced a two times higher level than VIP. The stimulatory effect of PACAP-27 on CCK release was also potentiated by bombesin and KCl but without a synergistic production of cAMP. With or without IBMX, PACAP-27-stimulated CCK secretion was not affected by the Ca2+ channel blocker diltiazem (1 microM), the cell-permeable Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM; 25 microM), or by downregulation of protein kinase C. The stimulatory effects of KCl and bombesin were either reduced or abolished by these treatments. The synergistic effect of bombesin with PACAP was abolished by diltiazem and BAPTA-AM but not by downregulation of protein kinase C, whereas KCl remained synergistic with PACAP after these treatments. Taken together, these results indicate that PACAP may be a neuromodulator of CCK secretion that acts through activation of adenylate cyclase and may function as a coregulator with other CCK secretagogues that are known to increase intracellular Ca2+ concentration.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3