New insights into lactase and glycosylceramidase activities of rat lactase-phlorizin hydrolase

Author:

Buller H. A.1,Van Wassenaer A. G.1,Raghavan S.1,Montgomery R. K.1,Sybicki M. A.1,Grand R. J.1

Affiliation:

1. Department of Pediatrics, Floating Hospital, New England MedicalCenter, Tufts University School of Medicine, Boston 02111.

Abstract

Lactase-phlorizin hydrolase, a small intestinal disaccharidase, has been considered mainly an enzyme important only for the hydrolysis of lactose. After weaning in most mammals lactase-specific activity falls markedly, and, functionally, adult mammals are considered to be lactase deficient. However, the persistence of low levels of lactase activity in adulthood has never been explained. In addition, it has been suggested that lactase-phlorizin hydrolase is associated with glycosylceramidase activity when the enzyme is prepared by column chromatography, but it is unclear whether this represents copurified activities or two catalytic sites on one peptide. The developmental patterns of lactase-phlorizin hydrolase and other disaccharidases were investigated in homogenates of total rat small intestine; lactase and several glycosylceramidases were measured in immunoprecipitates from these homogenates using a monoclonal antibody. The developmental pattern of total lactase activity showed a steady 2.3-fold increase to adult levels (specific activity decreased eightfold), whereas total phlorizin-hydrolase activity increased 10.7-fold (specific activity decreased threefold). As expected, levels of both total and specific sucrase and maltase activities increased during development. In lactating rats total lactase activity showed a significant increase compared with adult males. The developmental pattern of the enzyme activities for the glycolipid substrates was similar to that found for lactase, and the immunoprecipitated enzyme showed a 40- to 55-fold higher affinity for the glycolipids than for lactose. Galactosyl- and lactosylceramide inhibited lactose hydrolysis by 38%, without a competitive pattern, suggesting two different active sites for lactose and glycolipid hydrolysis, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3