Author:
Berr F.,Simon F. R.,Reichen J.
Abstract
Ethynylestradiol impairs bile flow and bile salt maximum secretory rate in rats, implying a secretory defect. In addition, Na-K-ATPase activity is decreased in liver surface membranes, suggesting abnormalities at the sinusoidal as well as the canalicular membrane. We investigated whether ethynylestradiol pretreatment affects bile salt uptake and Na-K pump function in isolated rat hepatocytes. Ethynylestradiol-treated cells were functionally intact as assayed with trypan blue exclusion, lactate dehydrogenase release, and oxygen consumption. Initial taurocholate uptake velocity was reduced by 73% in ethynylestradiol-treated hepatocytes [Vmax, 1.0 +/- 0.1 vs. 3.7 +/- 0.2 mumol X min-1 X (10(6) cells)-1; P less than 0.001; Km, 34 +/- 5 vs. 33 +/- 3 microM]. Na-K-ATPase activity in cell homogenates (36 +/- 5 vs. 27 +/- 4 mumol Pi X h-1 X mg prot-1; P less than 0.05), ouabain-suppressible rubidium-86 influx [6.8 +/- 1.1 vs. 4.8 +/- 1.0 nmol K+ X min-1 X (10(6) cells)-1; P less than 0.05], and intracellular potassium concentration (126 +/- 10 vs. 110 +/- 16 mmol/l; P less than 0.05) were reduced after ethynylestradiol. Taurocholate uptake measured at different temperatures between 25 degrees and 37 degrees was linear when plotted according to Arrhenius. The energy of activation was increased by 40% in ethynylestradiol-treated hepatocytes [17 +/- 4 vs. 23 +/- 4 kcal X mol-1 X (10(6) cells)-1; P less than 0.05], consistent with decreased membrane fluidity. These data suggest the possibility that during ethynylestradiol-induced cholestasis a disorder of the sinusoidal domain, caused perhaps by ethynylestradiol-induced alterations in membrane lipid composition, is an important contributing factor.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献