Postnatal expression of the canalicular bile acid transport system of rat liver

Author:

Novak D. A.1,Sippel C. J.1,Ananthanarayanan M.1,Suchy F. J.1

Affiliation:

1. Department of Pediatrics, Yale University School of Medicine, NewHaven, Connecticut 06510.

Abstract

Canalicular plasma membrane (CPM) vesicles prepared by a Ca2+ precipitation method from developing (7 and 14 days old) and adult rat liver were used to directly examine the postnatal ontogenesis of taurocholate (TC) transport. The initial rate of 50 microM TC uptake by vesicles derived from 14-day-old and adult but not 7-day-old animals was markedly inhibited by the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). DIDS-sensitive TC uptake was 21.6 +/- 5.6 (SE) at 14 days compared with 58.1 +/- 8.1 pmol.mg protein-1.5 s-1 in adults (P less than or equal to 0.01). Kinetic studies were performed by preloading these predominantly "right-side out" vesicles with TC (25-800 microM) and measuring the initial rate (5 s) of efflux into bile salt-free medium. Computer analysis of the DIDS-sensitive portion of efflux revealed saturable kinetics with a similar Vmax (2.72 +/- 0.36 vs. 1.97 +/- 0.17 nmol.mg protein-1.min-1; P = NS) but a threefold higher Km (0.35 +/- 0.09 vs. 0.11 +/- 0.02 mM; P less than or equal to 0.05) in 14 day vs. adult CPM vesicles. In contrast, efflux from 7 day CPM vesicles increased linearly with increasing concentrations of TC and was not inhibited by DIDS. Immunoblots of canalicular membranes, probed with an antibody against the 100-kDa bile acid transport protein, showed that the amount of immunoreactive carrier protein in the membranes of 14-day-old and adult rats was similar but was only 37% of the adult level at 7 days of age.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3