Cyclin and cyclin-dependent kinase 1 mRNA expression in models of regenerating liver and human liver diseases

Author:

Albrecht J. H.1,Hoffman J. S.1,Kren B. T.1,Steer C. J.1

Affiliation:

1. Department of Medicine, University of Minnesota Medical School,Minneapolis 55455.

Abstract

There is compelling evidence that the eukaryotic cell cycle is controlled by a family of proteins called cyclins, which complex with cyclin-dependent kinases (CDK) to modulate key events during cell division. We have examined the regulation of these genes in models of experimental liver regeneration and their expression in human liver diseases. Seventy percent partial hepatectomy (PH) was performed on rats and normal BALB/c and athymic nude mice to determine patterns of cyclin and CDK1 mRNA expression. It has been previously shown by [3H]thymidine incorporation that athymic nude mice manifest impaired regeneration after PH. Our results demonstrate a sequential pattern of cyclin and CDK1 transcript expression in each of the models. Cyclin D1 was the most abundant mRNA steady-state transcript in the regenerating livers. CDK1 and cyclins associated with later stages of the cell cycle showed delayed and diminished expression in nude mice compared with normals. Nuclear run-off assays performed at key time points post-PH revealed little change in transcription rates, suggesting that steady-state mRNA expression of the cyclin genes is regulated primarily by posttranscriptional events. Human liver tissue from various acute and chronic hepatic diseases showed increased expression of cyclins A and D1. We conclude that the regenerating liver post-PH offers an excellent in vivo model for studying cyclin and CDK gene expression. Impaired regeneration in the nude mouse is associated with altered cyclin and CDK1 mRNA transcript expression. Furthermore, cyclins may eventually provide clinically relevant molecular markers of regenerative activity in human liver diseases.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3