Association between HCO3(-) absorption and K+ uptake by Amphiuma jejunum: relations among HCO3(-) absorption, luminal K+, and intracellular K+ activity

Author:

Imon M. A.,White J. F.

Abstract

Titration techniques and K+- sensitive microelectrodes have been used to investigate the relations among HCO3(-) absorption, luminal K+, and intracellular K+ activity in in vitro Amphiuma jejunum. The HCO3(-) absorptive flux (JHCO3(-] measured by pH-stat under short circuit was reduced by removal of K+ from the medium but not by replacement of Na+ with choline. JHCO3(-) exhibited a seasonal variation when K+ was absent from the media and was increased to a maximum when K+ equaled 5 mM. Addition of K+ to a K+-free luminal medium stimulated JHCO3(-) much more than addition to the serosal medium. Acetazolamide (10(-4) M) blocked K+-stimulated HCO3(-) absorption while benzolamide reduced the short-circuit current associated with HCO3(-) absorption much more rapidly when added to the mucosal bathing medium. Intracellular K+ activity (aik) and mucosal membrane potential (psi m) of jejunal villus cells were measured with double-barreled microelectrodes. When bathed bilaterally with HCO3(-)-containing media, K+ was actively accumulated for many hours (aik = 58.5 mM) but in the presence of ouabain fell to equilibrium (16 mM) after 2 h. In contrast, when HCO3(-) absorption was induced by removal of serosal HCO3(-), aik was elevated to 83.6 mM and, after 4-h exposure to ouabain cell K+, remained far above electrochemical equilibrium at 33 mM. Tissues bathed in Na+-free (Tris) media containing ouabain retained cell K+ after 4 h at even higher levels (46 mM). Cell K+ activity was reduced by removal of K+ from either the mucosal or serosal medium. Acetazolamide reduced aik over 2 h in Na+-free media from 66 to 42 mM. The decline in aik was associated with a concomitant decline in the HCO3(-) absorptive current. It is concluded that K+ is actively accumulated across both luminal and serosal membranes of the jejunal absorptive cell and that the luminal uptake mechanism is linked to HCO3(-) absorption or an equivalent process.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of H+-K+ ATPase, Na+-K+-2Cl− and Na+-Cl−-HCO3 − Transporters in Vertebrate Small Intestine;Epithelial Transport Physiology;2009-10-15

2. Link between cell apical morphology and H+ secretion in salamander small intestine;American Journal of Physiology-Gastrointestinal and Liver Physiology;1991-07-01

3. Multitubular bodies in intestinal cells of Amphiuma means/tridactylum (Urodela): ultrastructural characterization;Cell and Tissue Research;1990-07

4. Active potassium absorption in rat distal colon.;The Journal of Physiology;1990-04-01

5. Ouabain-sensitive H+-K+ exchange mechanism in the apical membrane of guinea pig colon;American Journal of Physiology-Gastrointestinal and Liver Physiology;1989-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3