Rat intestinal lymph osmolarity during glucose and oleic acid absorption

Author:

Bohlen H. G.1,Unthank J. L.1

Affiliation:

1. Department of Physiology, Indiana University Medical School,Indianapolis 46223.

Abstract

The two major purposes of this study were to determine 1) how glucose and oleic acid absorption by the intestinal villi influenced the osmotic composition of lymph as it exited the villus base and 2) what if any changes in lymph osmolarity occurred as the lymph traversed through the bowel wall. The rat jejunum was used in all studies and lymph was collected from individual lymphatics at 0.5-1 nl/min during control states and luminal exposure to 35-550 mg% glucose solutions (isotonic in saline) and 5 and 20 mM oleic acidtaurocholate solutions. Lymph collected from the base of villi during vigorous motility had an osmolarity of 403 +/- 15 mosM at rest and was only increased 30-50 mosM more except during exposure to 550 mg% glucose, where osmolarity increased over 100 mosM. Under comparable conditions, the submucosal lymph osmolarity at rest was 302 +/- 3.5 mosM and increased to 330-350 mosM during exposure to all of the solutions tested. When intestinal motility was virtually stopped, the submucosal lymph osmolarity was isotonic for all solutions tested. These observations indicate that absorption of glucose and oleic acid increased the osmolarity of lymph, leaving the villus only 30-50 mosM unless a glucose concentration of 550 mg% was present. Furthermore, the increased flow of villus lymph during absorption raised the osmolarity of the submucosal lymph when bowel motility assisted the lymph propulsion. This movement of materials from the villus to the submucosa by venular blood and lymph flow provides an opportunity for the villus tissue to influence the composition of the submucosal interstitial environment.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structure and physiology of the lymphatic vasculature;Regional blood circulation and microcirculation;2020-10-07

2. Glucose and GLP-2 (Glucagon-Like Peptide-2) Mobilize Intestinal Triglyceride by Distinct Mechanisms;Arteriosclerosis, Thrombosis, and Vascular Biology;2019-08

3. Regulation of Chylomicron Secretion: Focus on Post-Assembly Mechanisms;Cellular and Molecular Gastroenterology and Hepatology;2019

4. Lymphatic Vessel Network Structure and Physiology;Comprehensive Physiology;2018-12-13

5. Influence of long-term feeding of high-fat diet on quercetin and fat absorption from the small intestine in lymph duct-cannulated rats;Bioscience, Biotechnology, and Biochemistry;2018-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3