Vagal interactions on brain stem neurons receiving input from the proximal stomach in cats

Author:

Barber William D.1,Yuan Chun-Su1,Cammarata Brian J.1

Affiliation:

1. Department of Anatomy, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona 85724

Abstract

Gastric vagal fibers on the proximal stomach that join the dorsal and ventral vagal trunks were electrically stimulated to localize and evaluate brain stem neuronal interactions in anesthetized cats. The brain stem responses were located in nucleus tractus solitarius in the dorsomedial, caudal region of the medulla oblongata. There was no significant difference in the mean latency of the gastric vagally evoked brain stem response between the dorsal and ventral vagal trunks. The responses consisted of single or multiple spikes with a mean latency of ap290 ± 50 (SD) ms. Forty-one percent, or 168 unitary responses of the 406 total responses recorded, showed convergence of proximal gastric vagal input from both the dorsal and ventral vagal trunks on the same recording site or on the same cell. Of those unitary responses that received convergent proximal gastric vagal input, 95 unitary responses (57%) showed convergence of input to the same area, on different cells at the same recording site during a single trial. Seventy-three single units (43%) received convergent input from proximal gastric vagal afferent fibers in both the dorsal and ventral trunks. Fifty-two, or 7l%, of the single unit convergent responses were excitatory in nature, whereas the remaining 29% were inhibitory. These data demonstrated that proximal gastric vagal afferent fibers that join the dorsal and ventral trunks converged on a significant number of single neurons in the brain stem. The convergent response was synaptically secure and exerted an identifiable biasing effect on the response of the brain stem neuron. These convergent interactions may play an important role in reflex mechanisms concerned with adaptive relaxation to accommodate the ingested content by the proximal stomach. gastric; proximal gastric vagal; ventral vagus; dorsal vagus; nucleus tractus solitarius; vagal brain stem interactions Submitted on March 14, 1988 Accepted on September 19, 1989

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hindbrain administration of NMDA receptor antagonist AP-5 increases food intake in the rat;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2006-03

2. Synaptic and morphologic properties in vitro of premotor rat nucleus tractus solitarius neurons labeled transneuronally from the stomach;The Journal of Comparative Neurology;2003-07-29

3. Vagally evoked synaptic currents in the immature rat nucleus tractus solitarii in an intactin vitropreparation;The Journal of Physiology;1998-10

4. Duodenal nutrient infusions differentially affect sham feeding and Fos expression in rat brain stem;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;1998-06-01

5. Gastric distension-induced c-fos expression in catecholaminergic neurons of rat dorsal vagal complex;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;1997-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3