Actions of Helodermatidae venom peptides and mammalian glucagon-like peptides on gastric chief cells

Author:

Rai A.1,Singh G.1,Raffaniello R.1,Eng J.1,Raufman J. P.1

Affiliation:

1. Department of Medicine, State University of New York-Health ScienceCenter, Brooklyn 11203-2098.

Abstract

The actions of peptides (helospectin I, helodermin, exendin-3, exendin-4) that have been isolated from the venoms of Helodermatidae lizards were examined using dispersed chief cells from guinea pig stomach. These actions were compared with those of mammalian glucagon-like peptides, particularly truncated glucagon-like peptide 1 (TGLP-1), a peptide that shares 53% homology with exendin-4. The Helodermatidae venom peptides and TGLP-1 caused a two- to threefold increase in chief cell adenosine 3',5'-cyclic monophosphate and pepsinogen secretion. Exendin-3 and exendin-4 were 100 times more potent than helospectin I and helodermin and 10 times more potent than TGLP-1. Helospectin I and helodermin, but not exendin-4 or TGLP-1, inhibited the binding of 125I-labeled vasoactive intestinal peptide (VIP) and 125I-secretin to dispersed chief cells. The actions of exendin-3, exendin-4, and TGLP-1, but not those of helospectin I, helodermin, VIP, or secretin, were progressively inhibited by increasing concentrations of an exendin-receptor antagonist, exendin-(9-39)-NH2. These data indicate that in gastric chief cells, whereas the actions of helospectin I and helodermin are mediated by interaction with high-affinity secretin (low-affinity VIP) receptors, the actions of exendin-3, exendin-4, and TGLP-1 are mediated by interaction with exendin receptors.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3