Bile salt hydrophobicity controls vesicle secretion rates and transformations in native bile

Author:

Cohen D. E.1,Leighton L. S.1,Carey M. C.1

Affiliation:

1. Department of Medicine, Harvard Medical School, Brigham and Women'sHospital, Boston, Massachusetts.

Abstract

After drainage of the bile salt pool, we infused unanesthetized bile fistula prairie dogs (Cynomys ludovicianus) intravenously with taurine-conjugated chenodeoxycholate (TCDC), cholate (TC), ursodeoxycholate (TUDC), and ursocholate (TUC) in concentrations that attained greater than 94% enrichment of biliary bile salts. With decreases in bile salt hydrophobicity, maximum steady state lecithin and to a lesser extent cholesterol secretion rates decreased in the rank order, TCDC greater than TC greater than TUDC greater than TUC. By phase analysis, TCDC-rich and TC-rich biles plotted inside their respective micellar zones, whereas TUDC-rich and TUC-rich biles plotted outside and were so-called "supersaturated" with cholesterol. Quasi-elastic light scattering and electron microscopy, when performed within 30 min of collection, revealed unilamellar vesicles in all biles. By 24 h, vesicles in TCDC-rich and TC-rich biles had dissolved into mixed micelles, whereas vesicles in TUDC-rich biles formed mixed micelles plus multilamellar liquid crystals, and vesicles in TUC-rich biles formed multilamellar liquid crystals exclusively. Because cholesterol/phospholipid molar ratios of multilamellar liquid crystals were less than or equal to 1, cholesterol monohydrate crystals did not form in these biles. We conclude that, despite drastic alterations in bile salt detergency, unilamellar vesicles are the final common pathway for lecithin and cholesterol secretion into bile. During equilibration of bile, the fate of unilamellar vesicles may be micellar, micellar plus liquid crystalline, or liquid crystalline only depending on the detergency (i.e., hydrophobic-hydrophilic balance) of the secreted bile salt.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3