Affiliation:
1. Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
Abstract
Because hepatocytes communicate via gap junctions, it has been proposed that Ca2+waves propagate through this pathway and in the process activate Ca2+-dependent cellular responses. We tested this hypothesis by measuring vasopressin-induced glycogenolysis in short-term cultures of rat hepatocytes. A 15-min vasopressin (10−8 M) stimulation induced a reduction of glycogen content that reached a maximum 1–3 h later. Gap junction blockers, octanol or 18α-glycyrrhetinic acid, reduced the effect by 70%. The glycogenolytic response induced by Ca2+ ionophore 8-bromo-A-21387, which acts on each hepatocyte, was not affected by gap junction blockers. Moreover, the vasopressin-induced glycogenolysis was lower (70%) in dispersed than in reaggregated hepatocytes and in dispersed hepatocytes was not affected by gap junction blockers. In hepatocytes reaggregated in the presence of a synthetic peptide homologous to a domain of the extracellular loop 1 of the main hepatocyte gap junctional protein, vasopressin-induced glycogenolysis and incidence of dye coupling were drastically reduced. Moreover, gap junctional communication was detected between reaggregated cells, suggesting that hepatocytes with different vasopressin receptor densities become coupled to each other. The vasopressin-induced effect was not affected by suramin, ruling out ATP as a paracrine mediator. We propose that gap junctions allow for a coordinated vasopressin-induced glycogenolytic response despite the heterogeneity among hepatocytes.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献