Affiliation:
1. Department of Physiology and Pharmacology, University of Salamanca, Spain.
Abstract
The efflux of [14C]taurocholate from previously loaded vesicles, obtained from basal plasma membrane of human trophoblast, was studied. Apparent Km (620 microM) and Vmax (1.79 nmol.min-1.mg protein-1) values were similar to those found in influx experiments (Marin et al., Gastroenterology 99: 1431-1438, 1990). Transmembrane gradients of both bicarbonate (100 mM) and unlabeled taurocholate (0.5 mM) accelerated [14C]taurocholate efflux. The bicarbonate-induced effect was not abolished by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and K(+)-valinomycin voltage clamp. Neither was it mimicked by 5,5'-dimethyloxazolidine 2,4-dione (DMO) or by other organic (taurine, glycine, lactate, or acetate) or inorganic (Cl-, SCN-, HPO24-, or SO24-) anions, and it was not sensitive to carbonic anhydrase inhibitors. No effect of bicarbonate was observed either in the absence of gradient or in the presence of a cis-directed gradient. Bicarbonate-induced transstimulation was related to an increase in the value for the apparent Vmax (+30%). Study of the stoichiometry suggests that the most probable coupling ratio is one, bicarbonate: taurocholate. In summary, these results provide evidence for the existence of a bicarbonate-driven anion exchange in the basal plasma membrane of the human term placental trophoblast.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献