Supramaximal CCK and CCh concentrations abolish VIP potentiation by inhibiting adenylyl cyclase activity

Author:

Akiyama Toshiharu1,Hirohata Yoshihide1,Okabayashi Yoshinori2,Imoto Issei1,Otsuki Makoto1

Affiliation:

1. Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu 807-8555; and

2. Second Department of Internal Medicine, School of Medicine, Kobe University, Kobe 650-0017, Japan

Abstract

Exocrine pancreatic secretion stimulated by vasoactive intestinal polypeptide (VIP), which acts through the adenylyl cyclase-cAMP pathway, is potentiated by stimulation with other secretagogues such as CCK and carbachol (CCh). However, the potentiating effect is abolished by the same secretagogues at supramaximal concentrations. In the present study, we examined the mechanisms by which supramaximal concentrations of CCK octapeptide (CCK-8) or CCh reduce the VIP-induced potentiation of amylase secretion from isolated rat pancreatic acini. VIP-stimulated amylase secretion was potentiated by submaximal stimulatory concentrations of CCK-8 and CCh but was reduced by the same reagents at higher concentrations. Supramaximal concentrations of CCK-8 or CCh also reduced forskolin-induced potentiation of amylase release but did not reduce that induced by 8-bromo-cAMP. Moreover, supramaximal concentrations of CCK-8 or CCh inhibited VIP-stimulated intracellular cAMP production as well as adenylyl cyclase activity. 12- O-tetradecanoylphorbol 13-acetate (TPA) also reduced the magnitude of the potentiation of amylase release caused by VIP plus CCK-8 or CCh, although TPA itself decreased neither VIP-stimulated adenylyl cyclase activity nor intracellular cAMP accumulation. These results indicate that supramaximal concentrations of CCK-8 and CCh reduce the potentiating effect of VIP and forskolin on amylase secretion by inhibiting the adenylyl cyclase activity. In addition, protein kinase C is suggested to be partly implicated in this inhibitory mechanism. The mechanisms that lead to such inhibition may be interlinked but distinct from each other.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3