Altered role of microtubules in asialoglycoprotein trafficking in developing liver

Author:

Kaufman S. S.1,Blain P. L.1,Park J. H.1,Tuma D. J.1

Affiliation:

1. Center for Human Nutrition, Veterans Administration Medical Center,Omaha, Nebraska.

Abstract

Efficient receptor-mediated endocytosis of asialoglycoprotein by mature liver requires participation of microtubules that convey newly internalized ligand to lysosomes for degradation and receptor back to plasma membrane to continue endocytosis. To ascertain whether microtubular participation in asialoglycoprotein endocytosis is altered during development, we compared endocytosis of 125I-labeled asialoorosomucoid (ASOR) in neonatal rat hepatocytes to that in adult cells, with and without microtubular disruption by colchicine. Control experiments demonstrated that 125I-ASOR degradation in neonatal hepatocytes occurred at 70% of the adult rate during continuous endocytosis, although neonatal surface receptors were only approximately 40% as numerous. Colchicine disruption of microtubules reduced 125I-ASOR degradation and steady-state intracellular ASOR more in adults during continuous endocytosis. Degradation of 125I-ASOR prebound to surface receptors was equally impaired by colchicine in the two groups. Continuous ASOR endocytosis by colchicine-treated adult hepatocytes progressively depleted their surface receptors but minimally in neonates. Unlike colchicine, the protonophore monensin markedly impaired receptor recycling as well as postinternalization ligand trafficking in both neonates and adults. Thus these experiments demonstrate that asialoglycoprotein processing proceeds as efficiently in neonatal as in adult hepatocytes despite a reduced surface receptor population. Microtubules are required to maintain receptors on cell surface as well as for postinternalization trafficking in adult cells. During development, only the latter process substantially requires microtubules, indicating that microtubular participation in protein trafficking is selectively, not uniformly, diminished at this time in life.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3