Identification of a domain in the carboxy terminus of CCK receptor that affects its intracellular trafficking

Author:

Go William Y.1,Holicky Eileen L.1,Hadac Elizabeth M.1,Rao Rammohan V.1,Miller Laurence J.1

Affiliation:

1. Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, Minnesota 55905

Abstract

The carboxy-terminal region of many guanine nucleotide-binding protein (G protein)-coupled receptors contains important regulatory sequences such as an NP(x)2–3Y motif, a site of fatty acid acylation, and serine- and threonine-rich domains. The type A CCK receptor contains all of these, yet their significance has not been examined. We have, therefore, constructed a series of receptor site mutants and truncations that interfere with each of these motifs and expressed each in Chinese hamster ovary cells where they were studied for radioligand binding, cell signaling, receptor internalization, and intracellular trafficking. Each construct was synthesized and transported appropriately to the cell surface, where CCK bound with high affinity, elicited an inositol 1,4,5-trisphosphate response, and resulted in internalization and normal trafficking. Thus modification or elimination of each of these established sequence motifs had no substantial effect on any of these parameters of receptor and cellular function. However, an additional construct that truncated the carboxy terminus, eliminating an additional 15-amino-acid segment devoid of any currently recognized sequence motifs, resulted in a marked change in receptor trafficking, with all other parameters of receptor function normal. This mutant receptor construct was delayed at the stage of early endosomes, delaying its progress to the lysosome-enriched perinuclear compartment from the rapid time course followed by wild-type receptor and all of the other constructs. It is proposed that this region of the CCK receptor tail contains a new motif important for intracellular receptor trafficking.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3