Secretin causes H+ secretion from intrahepatic bile ductules by vacuolar-type H(+)-ATPase

Author:

Villanger O.1,Veel T.1,Raeder M. G.1

Affiliation:

1. Institute for Experimental Medical Research, Ullevaal Hospital, University of Oslo, Norway.

Abstract

Intrahepatic bile duct epithelial cells contribute to bile formation by hormone-dependently secreting HCO3- to bile and H+ to periductular fluid. The present study was undertaken to determine whether the secretin-induced H+ secretion is due to activation of a H(+)-ATPase or Na(+)-H+ exchange. H+ secretion was estimated from the rate of intracellular pH (pHi) recovery after acid loading (24 mM NH4Cl) of microdissected bile ductules from pig liver mounted in a flow-through chamber on the stage of a microscope. pHi was measured from an estimated average of 10-15 epithelial cells using the fluorescent pHi indicator 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein and dual-wavelength excitation of fluorescence. The ducts were superfused with HCO3(-)-free N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid buffers. We found that secretin induced net H+ secretion of 4.53 +/- 0.7 mumol.ml cell volume-1 x min-1. This H+ secretion was blocked by 10(-6) M bafilomycin A1 but was unaffected by Na+ substitution with choline in the superfusion buffer. The experiments also showed that bafilomycin A1 did not block Na(+)-H+ exchange. The secretin-induced H+ secretion is probably caused by a vacuolar-type H(+)-ATPase and may constitute an important element of the cellular mechanisms causing secretin-dependent ductular HCO3- secretion into bile

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anatomy and Physiology of the Biliary Epithelium;Comprehensive Toxicology;2018

2. Fundamentals of Bicarbonate Secretion in Epithelia;Ion Channels and Transporters of Epithelia in Health and Disease;2015-12-15

3. Biliary Epithelial Cells;Molecular Pathology Library;2010-11-02

4. Cholangiocyte anion exchange and biliary bicarbonate excretion;World Journal of Gastroenterology;2006

5. Differential regulation of vacuolar H+-ATPase and Na+/H+ exchanger 3 in rat cholangiocytes after bile duct ligation;Histochemistry and Cell Biology;2005-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3