Substrate specificity of the rat liver Na+-bile salt cotransporter inXenopus laevis oocytes and in CHO cells

Author:

Schroeder Alice1,Eckhardt Uta1,Stieger Bruno1,Tynes Ronald2,Schteingart Claudio D.34,Hofmann Alan F.3,Meier Peter J.1,Hagenbuch Bruno1

Affiliation:

1. Division of Clinical Pharmacology and Toxicology, Department of Medicine, University Hospital, CH-8091 Zurich;

2. Drug Metabolism and Pharmakokinetics, Novartis Pharma, CH-4002 Basel, Switzerland;

3. Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla 92093-0813; and

4. Ferring Research, La Jolla, California 92037

Abstract

It has been proposed that the hepatocellular Na+-dependent bile salt uptake system exhibits a broad substrate specificity in intact hepatocytes. In contrast, recent expression studies in mammalian cell lines have suggested that the cloned rat liver Na+-taurocholate cotransporting polypeptide (Ntcp) may transport only taurocholate. To characterize its substrate specificity Ntcp was stably transfected into Chinese hamster ovary (CHO) cells. These cells exhibited saturable Na+-dependent uptake of [3H]taurocholate [Michaelis constant ( K m) of ∼34 μM] that was strongly inhibited by all major bile salts, estrone 3-sulfate, bumetanide, and cyclosporin A. Ntcp cRNA-injected Xenopus laevis oocytes and the transfected CHO cells exhibited saturable Na+-dependent uptake of [3H]taurochenodeoxycholate ( K m of ∼5 μM), [3H]tauroursodeoxycholate ( K m of ∼14 μM), and [14C]glycocholate ( K m of ∼27 μM). After induction of gene expression by sodium butyrate, Na+-dependent transport of [3H]estrone 3-sulfate ( K m of ∼27 μM) could also be detected in the transfected CHO cells. However, there was no detectable Na+-dependent uptake of [3H]bumetanide or [3H]cyclosporin A. These results show that the cloned Ntcp can mediate Na+-dependent uptake of all physiological bile salts as well as of the steroid conjugate estrone 3-sulfate. Hence, Ntcp is a multispecific transporter with preference for bile salts and other anionic steroidal compounds.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3