What transport adaptations enable mammals to absorb sugars and amino acids faster than reptiles?

Author:

Karasov W. H.,Solberg D. H.,Diamond J. M.

Abstract

What digestive adaptations enable mammals to process much more food in much less time with equal or higher digestive efficiency than reptiles and thus to sustain much higher metabolic rates? To answer this question, we measured glucose and proline uptake in small intestinal sleeves of three mammal and three reptile species of similar body size and natural diet. All species exhibit saturable, stereospecific uptake of D-glucose and Na+-dependent L-proline uptake. Passive permeability to glucose is high in hamsters and low in the other species. Uptake increases with temperature up to a maximum around 45–50 degrees C. This temperature dependence may help explain why reptiles bask after meals and why their digestion is impaired if basking is prevented. The total uptake capacity of the small intestine for glucose and proline is seven times higher in mammals than similar-sized reptiles, mainly because the area of mammalian intestine is 4–5.5 times greater. Minor reasons for the higher uptake capacity of mammals are that the transport activity of mammal intestine normalized to quantity of tissue is up to twofold higher and that reptile intestine operates at a lower temperature at night. Vmax for glucose transport varies 10-fold among species, but apparent differences in Km values may be unstirred-layer artifacts. Carrier-mediated uptake of glucose and proline is measurable in the colon of at least three species, but the uptake capacity of the colon is less than 10% of that of the small intestine. An appendix presents a method for measuring the microscopic area of intestines with ridges rather than villi, applies this method to desert iguana intestine, and measures area amplification due to villi in wood rat intestine.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3