Binding of [3H]palmitate to BSA

Author:

Elmadhoun B. M.1,Wang G. Q.1,Templeton J. F.1,Burczynski F. J.1

Affiliation:

1. Faculty of Pharmacy and Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

Abstract

Determination of the BSA-palmitate high-affinity binding constant ( K a) traditionally relied on the heptane-water partitioning technique. We used this technique to calculate K a for the BSA-[3H]palmitate complex, to determine if K a was independent of protein concentration, and to determine if the unbound [3H]palmitate concentration is constant at different BSA concentrations using constant BSA-to-palmitate molar ratios (range 1:1 to 1:4). After extensive extraction of non-[3H]palmitate radiolabeled substances, the heptane-to-buffer partition ratio, in the absence of BSA, was 702 ± 19 (mean ± SD, n = 6). This value was much lower than the predicted value of 1,376 and was highly dependent on which phase (organic or aqueous) initially contained the [3H]palmitic acid. The data were consistent with the notion of self-association of [3H]palmitate in the aqueous phase. K afor the BSA-[3H]palmitate complex was determined to be similar (2.2 ± 0.1) × 108M−1 (mean ± SD, P > 0.05) at all BSA concentrations studied. At each BSA-to-palmitate molar ratio, the equilibrium unbound ligand concentration was constant only at low BSA concentrations (<10 μM) and at low BSA-to-palmitate molar ratios (i.e., 1:1 and 1:2). At higher BSA concentrations and molar ratios, the unbound ligand concentration increased with an increase in protein concentration. Hepatocyte uptake using the manufacturer-supplied radiolabeled product was significantly higher than with the purified product, suggesting that a non-[3H]palmitate radiolabel is also a substrate for the uptake process.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3