Glucose flux from dietary disaccharides: all sugars are not absorbed at equal rates

Author:

Heitlinger L. A.1,Li B. U.1,Murray R. D.1,McClung H. J.1,Sloan H. R.1,DeVore D. R.1,Powers P.1

Affiliation:

1. Department of Pediatrics, Ohio State University, Columbus.

Abstract

Considerable discrepancies exist in the literature regarding the rates of glucose absorption from the common dietary disaccharides, lactose, maltose, and sucrose. This study compared the unidirectional flux of glucose derived from dietary disaccharides with that of their constituent monosaccharides in vitro. Lactose-stimulated short-circuit current (Isc) and mucosal-to-serosal flux (Jm----s) were lower than that of an equimolar glucose-galactose mixture and were phlorizin inhibitable. Maltose- and glucose-stimulated Isc were similar, but Jm----s of glucose derived from the hydrolysis of maltose was lower than that of free glucose. Sucrose-stimulated Isc and Jm----s were similar to that of an equimolar glucose-fructose mixture. Isc and Jm----s of glucose from both maltose and sucrose were phlorizin and acarbose inhibitable. We conclude that the rate of glucose uptake from disaccharides is less than or equal to that of free glucose and is dependent on the glucose source. We speculate that regulation of glucose uptake from disaccharides can occur at three sites: the hydrolytic enzyme, the glucose transporter, and the tight junctions.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3