Affiliation:
1. Department de Pharmacologie, Universite de Montreal, Quebec,Canada.
Abstract
Isolated rat hepatocyte couplets were used to study the direct effect of insulin on intracellular Ca2+ homeostasis. Insulin induced a dose-dependent increase in hepatocellular Ca2+ that was gradual, generally monophasic, and reversible. Chelation of extracellular Ca2+ abolished the insulin-induced Ca2+ response, and this suppression was not related to an effect on insulin binding, as indicated by displacement studies. We thus tested the effect of several Ca2+ channel inhibitors on insulin-induced Ca2+ influx. Verapamil at 20 or 200 microM was without effect, whereas 500 microM nickel and 50 microM gadolinium strongly inhibited insulin-induced Ca2+ entry. Finally, we tested whether insulin-induced Ca2+ movements were implicated in the stimulation of mitogen-activated protein kinase (MAPK) activity, which we measured with the use of an immune-complex assay. Verapamil was without effect on the insulin-dependent stimulation of p44mapk activity, whereas addition of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, nickel, or gadolinium strongly inhibited the effect of the peptide hormone. Our results indicate that insulin triggers Ca2+ influx into hepatocytes, possibly through the opening of channels on the plasma membrane, and that this effect is important for insulin activation of MAPK.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献