K+ transport in isolated guinea pig colonocytes: evidence for Na(+)-independent ouabain-sensitive K+ pump

Author:

Del Castillo J. R.1,Sulbaran-Carrasco M. C.1,Burguillos L.1

Affiliation:

1. Instituto Venezolano de Investigaciones Cientificas, Centro deBiofisica y Bioquimica, Caracas.

Abstract

K+ transport mechanisms in epithelial cells isolated from guinea pig distal colon have been studied using 86Rb as a tracer. A transport pathway has been identified that is proposed to be identical to the mechanism mediating transepithelial K+ absorption. Guinea pig colonocytes take up K+ through at least three separate mechanisms: 1) a Na(+)-dependent, ouabain-sensitive influx that is consistent with the Na(+)-K+ pump, 2) a Na(+)-dependent bumetanide-sensitive influx consistent with the Na(+)-K(+)-2Cl- cotransporter, and 3) a Na(+)-independent ouabain-sensitive influx, consistent with an apical colonic K+ pump. These transport mechanisms are sensitive to metabolic inhibition by rotenone and to vanadate, a blocker of type P adenosinetriphosphatase (ATPases). SCH-28080, an inhibitor of gastric K(+)-H(+)-ATPase, was without effect. Measurements of net K+ fluxes revealed that isolated colonocytes concentrated K+ by two processes: 1) a Na(+)-dependent ouabain-sensitive mechanism, which is compatible with the Na(+)-K+ pump and 2) a Na(+)-independent ouabain-sensitive mechanism consistent with the proposed absorptive K+ pump. These concentrative mechanisms were also inhibited by rotenone and vanadate, but not by SCH-28080. The Na(+)-independent ouabain-sensitive K+ pump was present in the distal colon, but absent in the proximal colon and the small intestine of guinea pig. It is proposed that this Na(+)-independent ouabain-sensitive K+ pump mediates K+ absorption and is related to the luminal K(+)-ATPase.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3