Affiliation:
1. Mount Desert Island Biological Laboratory, Salsbury Cove, Maine04672.
Abstract
To identify the sinusoidal bile acid uptake system(s) of skate liver, photoaffinity labeling and kinetic transport studies were performed in isolated plasma membranes as well as intact hepatocytes. In both preparations photoaffinity labeling with the photolabile bile salt derivative (7,7-azo-3 alpha, 12 alpha-dihydroxy-5 beta-[3 beta-3H]cholan-24-oyl)-2-aminoethanesulfonate revealed the presence of a predominant bile salt binding polypeptide with an apparent molecular weight of 54,000. The labeling of this polypeptide was inhibited by taurocholate and cholate in a concentration-dependent manner and was virtually abolished by 1 mM of the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. Kinetic studies of hepatic uptake with taurocholate, cholate, and the photoreactive bile salt derivative indicated the involvement of a single transport system, and all three substrates mutually competed with the uptake of each other. Finally, irreversible inhibition of the bile salt uptake system by photoaffinity labeling of hepatocytes with high concentrations (250 microM) of photolabile derivative reduced the Vmax but not the Km of taurocholate uptake. These findings strongly indicate that a single polypeptide with an apparent molecular weight of 54,000 is involved in sinusoidal bile salt uptake into skate hepatocytes. These findings contrast with similar studies in rat liver that implicate both a 54,000- and 48,000-K polypeptide in bile salt uptake and are consistent with a single Na+-independent transport mechanism for hepatic bile salt uptake in this primitive vertebrate.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献