Variations in rat mesenteric tissue thickness due to microvasculature

Author:

Barber B. J.1,Oppenheimer J.1,Zawieja D. C.1,Zimmermann H. A.1

Affiliation:

1. Department of Physiology, Medical College of Wisconsin, Milwaukee53226.

Abstract

Studies of microvascular, tissue and lymphatic transport using microphotometric and microfluorometric techniques are potentially subject to artifact due to variations in tissue specimen thickness. Absorbance techniques utilize the Lambert-Beer law in which A = log I0/I = act, where A is absorbance, I0 is incident light intensity, I is transmitted intensity, a is an absorbance coefficient, c is concentration of substance, and t is path length. If differences in t are known to be present, then inferences of changes in c from changes in A become suspect. In microfluorometry the amount of light gathered is proportional to the number of fluorochromes in the effective cuvette, which is determined by the microscope's numerical aperture and the sample thickness. If variations in thickness are known to occur, the effective cuvette volume may be changing; therefore, inferences of changes in fluorochrome concentration from changes in intensity become suspect. Existing data suggest that rat mesentery is 15-30 microns thick, but variation over a tissue region is unknown. Our goals are to determine thickness variation in avascular, fat-free mesenteric tissue regions; thickness variation near blood vessels; and average tissue thickness. Sprague-Dawley rats were anesthetized with Inactin. Mesenteric tissue from a loop of small intestine was draped over a platform for observation; thickness was measured with an oblique microscope and a microgravimetric technique. The average variation in avascular fat-free tissue was 1.1 micron/100-microns distance, and average thickness was 17.4 microns. There was a significant increase in thickness over the microvasculature.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3