Chief cells possess somatostatin receptors regulated by secretagogues acting through the calcium or cAMP pathway

Author:

Felley C. P.1,O'Dorisio T. M.1,Howe B.1,Coy D. H.1,Mantey S. A.1,Pradhan T. K.1,Sutliff V. E.1,Jensen R. T.1

Affiliation:

1. National Institute of Diabetes and Digestive and Kidney Diseases, Digestive Diseases Branch, National Institutes of Health, Bethesda, Maryland 20892.

Abstract

Inhibition both in vivo and in vitro of pepsinogen secretion by somatostatin (SS) and the histological demonstration that fundic D-cells contain long cytoplasmic processes extending to chief cells suggest a possible direct effect of SS on chief cell function. The aim of the present study was to determine whether SS interacts directly with receptors on isolated gastric chief cells and, if so, how SS alters cell function. Binding of 125I-[Tyr11]SS14 to chief cells was saturable, time and temperature dependent, and was inhibited by both SS14 (Ki 1.6 nM) and SS28 (Ki 5.2 nM). SMS-201-995 was 1,300-fold less potent than SS14. Calcium-mobilizing secretagogues reduced binding of 125I-[Tyr11]SS14 with efficacies of cholecystokinin octapeptide (CCK-8) > carbachol > gastrin. Adenosine 3',5'-cyclic monophosphate (cAMP)-activating secretagogues also inhibited binding with efficacies of secretin > vasoactive intestinal polypeptide (VIP). 12-O-tetradecanoylphorbol 13-acetate (TPA) or A-23187 also decreased binding. Analyses demonstrated that CCK-8 and TPA were decreasing the affinity of SS receptors for 125I-[Tyr11]SS14 without affecting their binding capacity. Both SS14 and SS28 at a maximally effective concentration inhibited cAMP production caused by VIP or secretin (20-30%) but did not alter cytosolic calcium ([Ca2+]i), inositol phosphates, or pepsinogen release. We conclude that chief cells possess SS receptors with a high affinity for both SS14 and SS28 but low affinity for SMS-201-995 and thus resemble the SSB receptors described in the rat cerebral cortex. Although occupation of these receptors by SS has no effect on pepsinogen release induced by secretagogues acting through either the calcium or the cAMP pathway, SS receptor occupation is regulated by agents activating phospholipase C, adenylate cyclase, protein kinase C, and [Ca2]i.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3