Duodenal acid-induced gastric relaxation is mediated by multiple pathways

Author:

Lu Yuan-Xu1,Owyang Chung1

Affiliation:

1. Gastroenterology Research Unit, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan 48109

Abstract

In this study, we used an in vivo anesthetized rat model to investigate the mechanisms responsible for duodenal acid-induced inhibition of gastric motility. Intraduodenal infusion of HCl produced a rate-dependent decrease in intragastric pressure. Infusion of HCl at 2 ml/h produced a physiological plasma secretin level and elicited a decrease in intragastric pressure of 3.0 ± 0.2 cmH20. Infusion of rabbit secretin antiserum reduced the acid-induced inhibition of gastric motility by 85 ± 5%, suggesting mediation mainly by endogenous secretin. Administration of the cholecystokinin (CCK)-A antagonist MK-329 caused only a modest 10 ± 3% reduction in gastric relaxation, whereas the serotonin antagonist ICS-205930 had no effect. In contrast, immunoneutralization with the secretin antibody caused only a 15% reduction in the relaxation evoked by a higher rate of HCl infusion (3 ml/h), whereas MK-329 and ICS-205930 caused a 20 ± 4% reduction and no reduction, respectively. Bilateral truncal vagotomy or perivagal application of capsaicin completely abolished gastric relaxation in response to low rates (1–2 ml/h) of 0.1 N HCl infusion but only partially affected gastric relaxation in response to a higher infusion rate (3 ml/h). These observations indicate that multiple pathways mediate the duodenal acid-induced inhibition of gastric motility. At low rates of HCl infusion, gastric relaxation is mediated primarily by endogenous secretin, which acts through vagal afferent pathways. At higher rates of HCl infusion, gastric relaxation is mediated by endogenous secretin, CCK, and possibly by the direct action of HCl on vagal afferent pathways or yet unidentified neuropathways.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3