Abstract
Studies on canalicular electrolyte transport are reviewed with reference to the concept that hepatocellular inorganic ion secretion may provide an osmotic drive for canalicular water flow. Cellular transport of electrolytes and of some nonelectrolytes appears directly or indirectly (cotransport or potential-sensitive transport) related to the activity of Na+-K+-ATPase of the sinusoidal cell membrane, but the role of the enzyme in regulating bile flow remains undetermined. Bile secretion of the isolated rat liver continues in the absence of either Na+, K+, Cl-, or HCO-3 when these ions are replaced in the perfusion medium by other permanent ions. Transepithelial salt concentration gradients, established experimentally, cause transient changes of bile flow and dissipate very quickly. Isotopic ion equilibration between sinusoids and bile proceeds faster than between sinusoids and liver cells. Both observations indicate extensive electrolyte diffusion through a paracellular shunt pathway. This pathway appears preferentially permeable to cations, and it restricts permeation of molecules of the size of sucrose (no apparent diffusion or effects of solvent drag) or bile acids (no backleak). In promoting canalicular osmotic water flow, transepithelial concentration gradients of NaCl are less effective than those of sucrose, revealing a reflection coefficient of NaCl of 0.3. By perfusion with hypertonic medium containing sucrose, bile flow is reduced. Bile production against this opposing osmotic gradient is accomplished by an increase in biliary organic anion concentration. Inorganic ion concentrations essentially conform to a Gibbs-Donnan distribution across the canalicular epithelium, established by the presence of impermeant anions in bile. Hence, the luminal electrical potential is expected to be negative with respect to the sinusoids. It is concluded that biliary secretion of endogenous organic anions is the major osmotic driving force for canalicular bile salt-independent bile flow and that transport of inorganic ions into bile results mainly from diffusion and solvent drag.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献