Author:
Ammon H. V.,Tapper E. J.,Komorowski R. A.,Charaf U. K.,Loeffler R. F.,Lewand D.,Walter L. G.
Abstract
To determine how sulfation alters the biological properties of dihydroxy bile acids, we compared the effects of 3-sulfodeoxycholate (SDC) and deoxycholate (DC) in the rat and rabbit intestine. While 5 mM DC induced water and electrolyte secretion and inhibited glucose absorption in the rat, SDC enhanced jejunal and ileal water and solute absorption. SDC had no effect in the rabbit ileum. In the rat jejunum DC caused mucosal injury and enhanced mucosal permeability while SDC had no effect. In vitro in the rabbit ileum, 10 mM SDC enhanced net sodium flux and decreased net residual flux, while 0.5 mM DC reduced net sodium flux and induced Cl- secretion. Both bile acids increased short-circuit current and potential difference and decreased tissue conductance. During reversed-phase, high-performance liquid chromatography SDC was more polar than DC. Sulfation reduced the ability of DC to destroy large unilamellar liposomes by a factor of 10. Thus, sulfation abolishes the effects of DC on the intestine by enhancing the polarity of this molecule. The enhancement of intestinal solute and water absorption by SDC requires further study.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献