Hepatocyte horseradish peroxidase uptake is saturable and inhibited by mannose-terminal glycoproteins

Author:

Yamaguchi Y.1,Dalle-Molle E.1,Hardison W. G.1

Affiliation:

1. Department of Medicine, Veterans Affairs Medical Center, San Diego,California 92161.

Abstract

In the liver, horseradish peroxidase (HRP) is thought to be taken up via mannose receptor-mediated endocytosis by non-parenchymal cells (NPC) and via fluid-phase endocytosis by hepatocytes. When we attempted to inhibit NPC uptake of HRP with mannan in the whole perfused rat liver, > 80% of HRP uptake was eliminated. Liver cell fractionation revealed that mannan not only inhibited HRP uptake by NPC (91%) but also by hepatocytes (81%). In isolated hepatocytes, HRP uptake was linear over 60 min and saturable in the range of 0 to 200 mg/l (Vmax = 4.3 ng.mg protein-1.min-1; Km = 8.3 mg/l). Mannan inhibited uptake competitively (Ki = 2.0-2.5 mg/l). At high concentrations of HRP, a nonsaturable component of HRP uptake became evident (k = 2.8 pg.mg protein-1.min-1.mg HRP-1.l-1). Hepatocyte uptake of HRP was inhibited by other glycoproteins and glycopeptides with mannose-terminal groups, as well as by mannan, but not by asialofetuin (ASF) or bovine serum albumin. Hepatocyte uptake of 125I-labeled ASF, which is taken up via the asialoglycoprotein receptor, was saturable and not inhibited by mannan. HRP binding to hepatocytes, determined at 4 degrees C, was also inhibited by mannan. Quantification of contamination of the parenchymal cell fraction by NPC by cell counting and by pronase digestibility suggested our results could not be explained by contamination of hepatocytes by NPC. At concentrations used for most morphological studies (1,000-10,000 mg/l), fluid-phase endocytosis accounts for much of HRP uptake. However, at low concentrations, a saturable low-capacity mechanism is responsible for most HRP uptake by the hepatocyte.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3