Intestinal inflammation: a complex interplay of immune and nonimmune cell interactions

Author:

Fiocchi Claudio1

Affiliation:

1. Division of Gastroenterology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4952

Abstract

Intestinal inflammation has traditionally been viewed as a process in which effector immune cells cause the destruction of other mucosal cells that behave as passive bystander targets. Progress in understanding the process of intestinal inflammation has led to a much broader and more integrated picture of the various mucosal components, a picture in which cytokines, growth factors, adhesion molecules, and the process of apoptosis act as functional mediators. Essentially all cellular and acellular components can exert immunelike activities, modifying the classical concept of selected immune cells acting on all other cells that has been the dogma of immunologically mediated tissue damage for decades. The existence of specialized communication pathways between epithelial cells and T cells is well documented, including abnormal epithelial cell-mediated T cell activation during inflammation. Mesenchymal cells contribute to fibrosis in the inflamed gut but are also responsible for retention and survival of leukocytes in the mucosa. In chronically inflamed intestine the local microvasculature displays leukocyte hyperadhesiveness, a phenomenon that probably contributes to persistence of inflammation. The extracellular matrix regulates the number, location, and activation of leukocytes, while metalloproteinases regulate the quantity and type of deposited matrix proteins. This evidence from the intestinal system, consolidated with the use of data from other organs and systems, reveals a rich network of reciprocal and finely orchestrated interactions among immune, epithelial, endothelial, mesenchymal, and nerve cells and the extracellular matrix. Although these interactions occur under normal conditions, the dysfunction of any component of this highly integrated mucosal system may lead to a disruption in communication and result in pathological inflammation.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3