Glutamine or glutamate release by the liver constitutes a major mechanism for nitrogen salvage

Author:

Remesy C.1,Moundras C.1,Morand C.1,Demigne C.1

Affiliation:

1. Laboratoire des Maladies Metaboliques et des Micronutriments,InstitutNational de la Recherche Agronomique de Clermont-Ferrand/Theix,Saint-Genes-Champanelle, France.

Abstract

The aim of the present study was to investigate mechanisms of N salvage by the liver when a diet is protein deficient. For this purpose, rats were adapted to a slightly deficient (11% casein) or moderately surfeit (22% casein) dietary protein level. Animals were sampled during the postprandial or the postabsorptive period, and fluxes across the digestive tract and liver were determined. During the postabsorptive period there was a negative balance of glutamine across the digestive tract in both diet groups. During the postprandial period the digestive balance of glutamine was still negative, despite a substantial supply of dietary glutamine and glutamate, suggesting that glutamine utilization is maximal during this period. There was a net production of glutamate and glutamine by the liver in both diet groups, but glutamine release was 73% higher in rats fed the low-protein diet. In these animals, because of the relatively low capacity of ureagenesis, N utilization was shifted toward glutamine synthesis: overall uptake of amino acids by the liver was approximately 5.3 micromol/min, and net release of glutamine + glutamate was approximately 2.9 micromol/min (hence a 55% cycling, on a molar basis). This cycling was only 12% in rats adapted to the 22% casein diet. When liver ammonia uptake was taken into account, N cycling showed parallel changes: 64% or 15% in rats adapted to the 11% or 22% casein diet, respectively. Besides glutamine delivery, glutamate was also released by the liver, representing an N source for extrasplanchnic tissues. With protein-deficient diets, hepatic glutamine delivery mainly serves to fulfill substrate needs for intestinal metabolism, which represents a mechanism for N salvage. This shift of N metabolism from urea toward glutamine production may imply a glutamate transfer from periportal to glutamine-synthesizing perivenous hepatocytes.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3