Copper transport kinetics by isolated rat hepatocytes

Author:

Schmitt R. C.,Darwish H. M.,Cheney J. C.,Ettinger M. J.

Abstract

Uptake and efflux of 64Cu were examined to determine whether hepatic parenchymal cells exhibit the kinetic criteria of a specific transport system for copper and related trace metals. Saturation kinetics were clearly indicated by both v versus [Cu] and 1/v versus 1/[Cu] plots (Km = 11 +/- 0.6 microM and Vmax = 2.7 nmol Cu X min-1 X mg prot-1). Identical results were obtained by cold-copper analyses, and contributions from simple diffusion or nonspecific binding were not detected. Virtually all of the accumulated 64Cu was intracellular by 0.5 min (the initial velocity period), with approximately 40% in the cytosolic fraction. Several related trace metals inhibited 64Cu uptake, but Ni(II) at a 10:1 molar excess did not. Zn(II) acted as a simple competitive inhibitor of 64Cu uptake (Ki = 16 microM). Efflux from preloaded cells was biphasic, with an initial rapid phase of approximately 5 min. Approximately 35% of preloaded 64Cu was transported out of the cells by 40 min, and little efflux occurred thereafter. Thus, hepatocytes exhibit saturation kinetics, competition by related substrates, and countertransport criteria of specific facilitated transport. A wide variety of metabolic inhibitors have no effect on 64Cu uptake under the same conditions that inhibit the active transport of bile acids. Specific inhibitor tests for electrogenic coupling were also negative. Because the identical kinetic parameters were obtained for free 64Cu and the 1:1 64Cu-histidine complex, it is inferred that copper is probably transported as the free ion. Cells incubated with greater than or equal to 10 microM 64Cu showed a net loss of copper after 40- to 60-min incubation, which may involve specific hepatic mechanisms in copper homeostasis.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3