Morphology and electrophysiology of guinea pig gastric mucosal repair in vitro

Author:

Rutten M. J.,Ito S.

Abstract

Guinea pig gastric mucosae stripped of their outer muscle layers were studied in Ussing chambers for up to 14 h. Ten minutes after the mucosae were mounted in the chamber, the electrical parameters were low but continued to rise over 90 min until steady-state potential difference (PD), resistance (R), and short-circuit current (Isc) were recorded. Morphological analysis during the first 10 min of the tissue in the chamber revealed gaps in the epithelium due to damaged cells. However, tissues examined after 20 min in the chamber showed little evidence of epithelial discontinuity. Thereafter, the initial rise in the electrical parameters was noted. After steady-state attainment, the lumen was exposed to 1.25 M NaCl for 5 min and then changed back to 150 mM NaCl. Ten minutes after washout and return to control solutions, the PD, R, and Isc had fallen to low values. At 30 min after washout of the NaCl, the PD, R, and Isc began to increase and after 2 h were back to control values. Morphological analysis of mucosae fixed up to 10 min after exposure to 1.25 M NaCl showed extensive damage and exfoliation of surface cells. However, by 30 min the epithelium was restored and had very few discontinuities, which was then followed by the return of the electrical parameters. The conclusions from these studies are 1) guinea pig gastric mucosae exposed to hypertonic NaCl on the luminal side will primarily result in surface epithelial cell destruction with an immediate drop in the transepithelial electrical values; 2) after return to isotonic saline the damaged mucosa can repair itself within minutes, which then allows the reestablishment of the transepithelial electrical parameters by 2 h; and 3) the good viability and reproducibility of this preparation present a suitable mammalian model system for the study of factors of mucosal repair.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3