Effect of a Rab3A effector domain-related peptide, CCK, and EGF in permeabilized pancreatic acini

Author:

Zeuzem S.1,Stryjek-Kaminska D.1,Caspary W. F.1,Stein J.1,Piiper A.1

Affiliation:

1. Department of Internal Medicine, University of Frankfurt,Germany.

Abstract

We report here that a synthetic peptide of the effector domain of the small-molecular-weight GTP-binding protein Rab3A (EDRab3AL) is a potent stimulator of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] production and amylase secretion in digitonin-permeabilized pancreatic acini. Moreover, the Rab3A effector domain peptide caused phosphatidylinositol 4,5-bisphosphate breakdown, indicating that the observed increase in Ins(1,4,5)P3 is due to stimulation of a phosphoinositide-specific phospholipase C (PLC). The dose-response curve for EDRab3AL-induced amylase release was biphasic, showing a maximum at 0.3 nM EDRab3AL and a decline at higher peptide concentrations. By contrast, the dose-response curve for EDRab3AL-induced Ins(1,4,5)P3 production was monophasic, showing stimulation with increasing EDRab3AL concentrations. A peptide of the effector domain of Rab1A, EDRab1AL, had no effect, indicating that the response to EDRab3AL is specific. Cholecystokinin octapeptide (CCK-8) and EDRab3AL had additive effects on the acinar Ins(1,4,5)P3 level. Epidermal growth factor (EGF), which has recently been shown to inhibit CCK-8-induced Ins(1,4,5)P3 production in pancreatic acinar cells, also decreased EDRab3AL-induced Ins(1,4,5)P3 production. These results suggest that EDRab3AL and CCK-8 act on the same EGF-inhibitable PLC by independent mechanisms. CCK-8 increased and EGF decreased amylase release in response to submaximal EDRab3AL concentrations. By contrast, at supramaximal EDRab3AL concentrations EGF increased and CCK-8 decreased EDRab3AL-stimulated amylase release. EDRab3AL had no effect in intact acini, indicating that the site of action of EDRab3AL is intracellular. We conclude that EDRab3AL regulates phosphoinositide-specific PLC activity and thereby amylase secretion in an analogous fashion to CCK-8, but from within the cell.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3