Hepatic uptake of hippurate: a multiple-indicator dilution, perfused rat liver study

Author:

Yoshimura Tsutomu1,Schwab Andreas J.2,Tao Lei1,Barker Ford1,Pang K. Sandy13

Affiliation:

1. Faculty of Pharmacy, University of Toronto, Toronto M5S 2S2;

2. McGill University Medical Clinic, Montreal General Hospital, and Department of Medicine, McGill University, Montreal, Québec, Canada H3G 1A4

3. Department of Pharmacology, University of Toronto, Toronto, Ontario M5S 1S1; and

Abstract

The hepatic transport of hippuric acid (HA), a glycine-conjugated metabolite of benzoic acid that exhibits only modest plasma albumin binding (binding association constant of 2.1 × 103M−1), was studied in the single-pass perfused rat liver (12 ml/min), using the multiple indicator dilution (MID) technique. The venous recovery of [3H]HA on portal venous injection of a MID dose containing a mixture of a set of noneliminated reference indicators and [3H]HA revealed a survival fraction of unity, corroborating the lack of disappearance of bulk HA from plasma. When the outflow recovery was fitted to the barrier-limited model of Goresky et al. (C. A. Goresky, G. G. Bach, and B. E. Nadeau. J. Clin. Invest. 52: 991–1009, 1973), the derived influx ( P in S ) and efflux ( P out S ) permeability-surface area products were found to be dependent on the concentration of HA (1–930 μM); P in S and P out S were ∼3.5 times the plasma flow rate at low HA concentration, but decreased with increasing HA concentration. All values, however, greatly exceeded the expected contribution from passive diffusion, because the equilibrium distribution ratio of chloroform to buffer for HA was extremely low (0.0001 at pH 7.4). The tissue equilibrium partition coefficient ( P in/ P out, or ratio of influx to efflux rate constants, k 1/ k −1) was less than unity and decreased with concentration. The optimized apparent Michaelis-Menten constant and maximal velocity were 182 ± 60 μM and 12 ± 4 nmol ⋅ s−1 ⋅ g−1, respectively, for influx and 390 ± 190 μM and 29 ± 13 nmol ⋅ s−1 ⋅ g−1, respectively, for efflux. In the presence ofl-lactate (20 mM), however, P in S for the uptake of HA (174 ± 3 μM) was reduced. Benzoic acid (10–873 μM) was also effective in reducing hepatic uptake of HA (5.3 ± 0.9 μM). These interactions suggest that MCT2, the monocarboxylate transporter that mediates the hepatic uptake of lactate and other monocarboxylic acids, may be involved in HA transport.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3