Responses of ferret lower esophageal sphincter to 5-hydroxytryptamine: pathways and receptor subtypes

Author:

Blackshaw L. A.1,Nisyrios V.1,Dent J.1

Affiliation:

1. Royal Adelaide Hospital, Australia.

Abstract

In urethananesthetized ferrets, basal lower esophageal sphincter pressure (LESP) was unaffected by the 5-hydroxytryptamine3 (5-HT3) receptor antagonist granisetron (0.5 mg/kg) or by greater splanchnic nerve section (GSX), but increased after bilateral vagotomy. Peripheral vagal nerve stimulation caused LES relaxation, often followed by a brief contraction and a prolonged inhibition of LESP. Close intra-arterial injection of 5-HT (5-100 micrograms) had a biphasic effect on LESP, with a brief drop followed by a prolonged increase. Granisetron (0.5 mg/kg i.v.) abolished the initial relaxation and revealed an earlier peak of excitation. This was not influenced by subsequent vagotomy and GSX. In a series of eight additional experiments (series 2), granisetron was given after vagotomy and GSX. In series 2, 5-HT-induced relaxation was unaffected by vagotomy but was significantly reduced after GSX and was further reduced after granisetron, indicating that 5-HT3 receptor mechanisms may lie on a sympathetic neural pathway. Vagotomy had no effect on the excitatory component. GSX had no effect on the amplitude of excitation, but reduced its latency. Granisetron had no further effect on excitation in series 2. In a separate series of 13 experiments (series 3), the excitatory component of the LES response to 5-HT was abolished by ketanserin (2.5 mg/kg i.v.) , after which only relaxation occurred. Both 5-HT2 and 5-HT3 antagonists in combination abolished all effects of 5-HT on LESP. Atropine (400 micrograms/kg i.v., n = 7) had no effect on 5-HT-induced LES responses.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3