Alteration of cAMP-mediated hormonal responsiveness by bile acids in cells of nonhepatic origin

Author:

Bouscarel B.1,Ceryak S.1,Gettys T. W.1,Fromm H.1,Noonan F.1

Affiliation:

1. Department of Medicine, George Washington University Medical Center,Washington, DC 20037, USA.

Abstract

The present study was undertaken to determine whether bile acids could inhibit hormone-induced adenosine 3',5'-cyclic monophosphate (cAMP) production in cells of nonhepatic origin, as previously reported in the liver [Bouscarel et al., Am. J. Physiol. 268 (Gastrointest. Liver Physiol. 31): G300-G310, 1995]. The bile acids, ursodeoxycholic acid (UDCA), chenodeoxycholic acid, and deoxycholic acid inhibited prostaglandin E1 (PGE1)- and isoproterenol-induced cAMP production by 40-60% in human skin fibroblasts and human umbilical vein endothelial cells, respectively, to a similar extent as that observed in the liver. However, in both models, the taurine conjugates of these respective dihydroxy bile acids were without effect. After permeabilization of fibroblasts with saponin, UDCA, and its taurine conjugates inhibited hormone-induced cAMP production in a similar manner with a maximum inhibition of approximately 55%. The other taurine-conjugated dihydroxy bile acids were also able to inhibit PGE1-induced cAMP production. Furthermore, in human fibroblasts, UDCA was taken up in a dose- and time-dependent manner, whereas there was no uptake of taurocholic acid, even after 30 min of incubation. Therefore these results suggest that plasma membrane crossing of bile acids is a requirement for their inhibition of hormone-induced cAMP production. The ability of certain bile acids to affect hormone-induced cAMP production in extrahepatic tissues may be of pathophysiological significance in certain cholestatic liver diseases.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3