Secretin induces the apical insertion of aquaporin-1 water channels in rat cholangiocytes

Author:

Marinelli Raúl A.1,Tietz Pamela S.1,Pham Linh D.1,Rueckert Lisa1,Agre Peter2,LaRusso Nicholas F.1

Affiliation:

1. Center for Basic Research in Digestive Diseases, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Mayo Medical School, Rochester, Minnesota 55905; and

2. Departments of Biological Chemistry and Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

Abstract

Aquaporin-1 (AQP1) water channels are present in the apical and basolateral plasma membrane domains of bile duct epithelial cells, or cholangiocytes, and mediate the transport of water in these cells. We previously reported that secretin, a hormone known to stimulate ductal bile secretion, increases cholangiocyte osmotic water permeability and stimulates the redistribution of AQP1 from an intracellular vesicular pool to the cholangiocyte plasma membrane. Nevertheless, the target plasma membrane domain (i.e., basolateral or apical) for secretin-regulated trafficking of AQP1 in cholangiocytes is unknown, as is the functional significance of this process for the secretion of ductal bile. In this study, we used primarily an in vivo model (i.e., rats with cholangiocyte hyperplasia induced by bile duct ligation) to address these issues. AQP1 was quantitated by immunoblotting in apical and basolateral plasma membranes prepared from cholangiocytes isolated from rats 20 min after intravenous infusion of secretin. Secretin increased bile flow (78%, P < 0.01) as well as the amount of AQP1 in the apical cholangiocyte plasma membrane (127%, P < 0.05). In contrast, the amount of AQP1 in the basolateral cholangiocyte membrane and the specific activity of an apical cholangiocyte marker enzyme (i.e., γ-glutamyltranspeptidase) were unaffected by secretin. Similar observations were made when freshly isolated cholangiocytes were directly exposed to secretin. Immunohistochemistry for AQP1 in liver sections from secretin-treated rats showed intensified staining at the apical region of cholangiocytes. Pretreatment of rats with colchicine (but not with its inactive analog β-lumicolchicine) inhibited both the increases of AQP1 in the cholangiocyte plasma membrane (94%, P < 0.05) and the bile flow induced by secretin (54%, P < 0.05). Our results in vivo indicate that secretin induces the microtubule-dependent insertion of AQP1 exclusively into the secretory pole (i.e., apical membrane domain) of rat cholangiocytes, a process that likely accounts for the ability of secretin to stimulate ductal bile secretion.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3