Regulation of intracellular pH gradients by identified Na/H exchanger isoforms and a short-chain fatty acid

Author:

Gonda Tamas1,Maouyo Djikolngar1,Rees Sharon E.1,Montrose Marshall H.1

Affiliation:

1. Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

Abstract

Colonic luminal short-chain fatty acids (SCFA) stimulate electroneutral sodium absorption via activation of apical Na/H exchange. HT29-C1 cells were used previously to demonstrate that transepithelial SCFA gradients selectively activate polarized Na/H exchangers. Fluorometry and confocal microscopy (with BCECF and carboxy SNARF-1, respectively) are used to measure intracellular pH (pHi) in HT29-C1 cells, to find out which Na/H exchanger isoforms are expressed and if results are due to pHi gradients. Inhibition of Na/H exchange by HOE-694 identified 1) two inhibitory sites [50% inhibitory dose (ID50) = 1.6 and 0.05 μM] in suspended cells and 2) one inhibitory site each in the apical and basolateral membranes of filter-attached cells (apical ID50 = 1.4 μM, basolateral ID50 = 0.3 μM). RT-PCR detected mRNA of Na/H exchanger isoforms NHE1 and NHE2 but not of NHE3. Confocal microscopy of filter-attached cells reported HOE-694-sensitive pHi recovery in response to luminal or serosal 130 mM propionate. Confocal analysis along the apical-to-basal axis revealed that 1) luminal or serosal propionate establishes transcellular pHigradients and 2) the predominant site of pHi acidification and pHi recovery is the apical portion of cells. Luminal propionate produced a significantly greater acidification of the apical vs. basal portion of the cell (compared with serosal propionate), but no other dependence on the orientation of the SCFA gradient was observed. Results provide direct evidence for a subcellular response that assures robust activation of apical NHE2 and dampening of basolateral NHE1 during pHi regulation.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3