Human colonic epithelial cells express galanin-1 receptors, which when activated cause Cl− secretion

Author:

Benya Richard V.1,Marrero Jorge A.1,Ostrovskiy Denis A.1,Koutsouris Athanasia1,Hecht Gail1

Affiliation:

1. Department of Medicine, University of Illinois and Chicago Veterans Affairs Medical Center, West Side Division, Chicago, Illinois 60612

Abstract

Galanin is a peptide hormone widely expressed in the central nervous system and gastrointestinal (GI) tract. Within the GI tract galanin is present in enteric nerve terminals where it is known to modulate intestinal motility by altering smooth muscle contraction. Recent studies also show that galanin can alter intestinal short-circuit current ( I sc) but with differing results observed in rats, rabbits, guinea pigs, and pigs. In contrast, nothing is known about the ability of galanin to alter ion transport in human intestinal epithelial tissues. By RT-PCR, we determined that these tissues express only the galanin-1 receptor (Gal1-R) subtype. To evaluate Gal1-R pharmacology and physiology, we studied T84 cells. Gal1-R expressed by these cells bound galanin rapidly (half time 1–2 min) and with high affinity (inhibitor constant 0.7 ± 0.2 nM). T84 cells were then studied in a modified Ussing chamber and alterations in I sc, a measure of all ion movement across the tissue, were determined. Maximal increases in I sc were observed in a concentration-dependent manner around 2 min after stimulation with peptide, with 1 μM galanin causing I sc to rise more than eightfold and return to baseline occurring within 10 min. The increase in galanin-induced I sc was shown by125I efflux studies to be due to Cl secretion, which occurred independently of alterations in cAMP and phospholipase C. Rather, Cl secretion is mediated via a Ca2+-dependent, pertussis toxin-sensitive mechanism. These data suggest that galanin released by enteric nerves may act as a secretagogue in the human colon by activating Gal1-R.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3