Role of Kupffer cells in the pathogenesis of hepatic reperfusion injury

Author:

Bremer C.1,Bradford B. U.1,Hunt K. J.1,Knecht K. T.1,Connor H. D.1,Mason R. P.1,Thurman R. G.1

Affiliation:

1. Department of Pharmacology, University of North Carolina, Chapel Hill27599-7365.

Abstract

The purpose of this study was to evaluate the role of Kupffer cell activation in the pathogenesis of reperfusion injury. In a blood-free liver perfusion model, pericentral hypoxia and reperfusion injury occurred. Lactate dehydrogenase (LDH) and malondialdehyde (MDA) release, oxygen uptake, and trypan blue staining were assessed. Within the first 10 min of reflow, LDH and MDA release reached maximal values of 44 U.g-1.h-1 and 115 nmol.g-1.h-1, respectively. Trypan blue cell staining was confined to pericentral regions of the liver lobule. When Kupffer cells were inactivated with GdCl3, release of enzymes and MDA was reduced significantly by > 50%, and hepatic cell death was almost completely absent. Since increases in MDA suggested involvement of free radicals, livers were perfused with phenyl N-t-butylnitrone (5 mM), a spin-trapping agent. Analysis of liver tissue by electron paramagnetic resonance spectroscopy revealed a typical six-line spectrum, providing direct evidence that carbon-centered radicals were generated on reflow. GdCl3 treatment decreased radical adduct formation by approximately 50%. Collectively, these results strongly support the hypothesis that activation of Kupffer cells plays an important role in the pathogenesis of hepatic reperfusion injury.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3