CFTR is required for cAMP inhibition of intestinal Na+ absorption in a cystic fibrosis mouse model

Author:

Clarke L. L.1,Harline M. C.1

Affiliation:

1. Dalton Cardiovascular Research Center, University of Missouri atColumbia 65211, USA.

Abstract

Acute adenosine 3',5'-cyclic monophosphate (cAMP) stimulation of intestinal epithelium induces net transepithelial Cl- secretion and inhibits neutral coupled NaCl absorption. To investigate the role that the cystic fibrosis transmembrane conductance regulator (CFTR) plays in these events, we measured bioelectric changes and radioisotopic NaCl flux across jejunal tissues from gene-targeted cftr "knockout" mice [cftr(-/-) homozygotes] and their normal littermates [cftr(+/+) homozygotes and cftr(+/-) heterozygotes]. Before stimulation, the short-circuit current (Isc, an index of Cl- secretion) of the cftr(-/-) jejunum was essentially zero and significantly less than in the cftr(+/+) or cftr(+/-) intestine. Acute cAMP stimulation had little effect on the bioelectric parameters of the cftr(-/-) intestine but induced a marked increase of Isc and decrease of total tissue conductance in both the cftr(+/+) and cftr(+/-) intestine. Differences in the magnitude of the cAMP-induced Isc between the cftr(+/+) and cftr(+/-) intestine were only observed when the cell-to-lumen anion concentration gradient was maximized by removal of permeant anions from the luminal bath. Radioisotope flux measurements revealed that Na+ and Cl- were absorbed equally across the cftr(-/-) jejunum under basal conditions. In cftr(+/+) and cftr(+/-) intestine, Na+ was absorbed at a similar rate, but net Cl- absorption was reduced from that in cftr(-/-) intestine by an amount approximating the Isc. Acute cAMP stimulation of the cftr(+/+) and cftr(+/-) intestine abolished net NaCl absorption and induced electrogenic Cl- secretion. In contrast, net NaCl absorption was unchanged from the preceding flux period in the cftr(-/-) jejunum. The data suggest that CFTR not only mediates cAMP-induced transepithelial Cl- secretion but is also required for cAMP inhibition of neutral NaCl absorption in the intestine.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3