Abstract
A relation between duodenal myoelectric and motor activity and alkaline secretion has been investigated in conscious dogs under basal conditions and following vagal excitation with and without pretreatment with atropine or indomethacin. It was found that duodenal alkaline secretion shows typical periodicity in phase with the myoelectric or motor activity of the duodenum, reaching a peak during phase III and a nadir during phase I of the migrating motor complex (MMC). Sham feeding interrupted the motor and secretory MMC cycle and caused a prolonged increase in duodenal myoelectric or motor activity as well as a sudden and marked rise in duodenal alkaline secretion accompanied by a significant elevation in plasma gastrin and pancreatic polypeptide. Atropine and indomethacin abolished the motor and secretory duodenal cycles and reduced basal alkaline secretion significantly. Atropine abolished, whereas indomethacin increased duodenal myoelectric or motor activity during basal conditions and after vagal stimulation. Neither atropine nor indomethacin abolished sham feeding-induced duodenal alkaline secretion. We conclude that duodenal alkaline secretion fluctuates cyclically in phase with duodenal motility, vagal excitation results in a potent stimulation of duodenal motor and secretory activity, and the mechanism of vagally induced duodenal alkaline secretion is only partly cholinergic and does not involve endogenous generation of prostaglandins.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献