Both low- and high-affinity CCK receptor states mediate trophic effects on rat pancreatic acinar cells

Author:

Hoshi H.1,Logsdon C. D.1

Affiliation:

1. Department of Physiology, University of Michigan, Ann Arbor, Michigan48109.

Abstract

Cholecystokinin (CCK) stimulates the growth of pancreatic acinar cells. However, the molecular mechanisms involved in this trophic action are unknown. CCK binds to both high- and low-affinity receptor states, and these two states appear to activate separate sets of intracellular messengers and have opposite effects on amylase release. JMV-180 is a CCK analogue that interacts in the rat with the high-affinity state as an agonist and the low-affinity state as an antagonist. In the current study, CCK octapeptide (CCK-8) and JMV-180 were tested for their ability to stimulate the growth of rat pancreatic acinar cells in primary culture. CCK-8 stimulated [3H]thymidine incorporation into DNA in a dose-dependent manner. Effects were observed with 0.3 nM, and maximal increases were seen at 3 nM CCK-8 (442 +/- 53% of control, n = 5, P < 0.01). JMV-180 also stimulated DNA synthesis. Effects were noted with 10 nM, and a maximal increase of 267 +/- 82% (n = 4, P < 0.01) of control was stimulated by 100 nM JMV-180. These data with JMV-180 indicate that the high-affinity receptor state for CCK is capable of stimulating DNA synthesis. However, within the same experiment the effects of CCK were always significantly greater than those of JMV-180. To test whether CCK has an additional effect through interactions with the low-affinity state, the effects of a combination of JMV-180 with a maximal dose of CCK-8 were examined. JMV-180 inhibited the maximal effect of CCK-8 in a dose-dependent manner with a maximal inhibition occurring with 1 microM JMV-180. The effects of the combination of 3 nM CCK-8 and 1 microM JMV-180 were no greater than those of JMV-180 alone. Taken together these data indicate that CCK-mediated increases in DNA synthesis in rat pancreatic acinar cells in vitro occur by interactions with both high- and low-affinity receptor states.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3