Phosphorylation of connexin 43 induced by traumatic brain injury promotes exosome release

Author:

Chen Wei1,Guo Yijun1,Yang Wenjin1,Chen Lei1,Ren Dabin1,Wu Chenxing1,He Bin1,Zheng Ping1,Tong Wusong1

Affiliation:

1. The People’s Hospital of Pu Dong New Area, Chuansha New Town, Shanghai, People’s Republic of China

Abstract

Traumatic brain injury (TBI) caused by the external force leads to the neuronal dysfunction and even death. TBI has been reported to significantly increase the phosphorylation of glial gap junction protein connexin 43 (Cx43), which in turn propagates damages into surrounding brain tissues. However, the neuroprotective and anti-apoptosis effects of glia-derived exosomes have also been implicated in recent studies. Therefore, we detected whether TBI-induced phosphorylation of Cx43 would promote exosome release in rat brain. To generate TBI model, adult male Sprague-Dawley rats were subjected to lateral fluid percussion injury. Phosphorylated Cx43 protein levels and exosome activities were quantified using Western blot analysis following TBI. Long-term potentiation (LTP) was also tested in rat hippocampal slices. TBI significantly increased the phosphorylated Cx43 and exosome markers expression in rat ipsilateral hippocampus, but not cortex. Blocking the activity of Cx43 or ERK, but not JNK, significantly suppressed TBI-induced exosome release in hippocampus. Furthermore, TBI significantly inhibited the induction of LTP in hippocampal slices, which could be partially but significantly restored by pretreatment with exosomes. The results imply that TBI-activated Cx43 could mediate a nociceptive effect by propagating the brain damages, as well as a neuroprotective effect by promoting exosome release. NEW & NOTEWORTHY We have demonstrated in rat traumatic brain injury (TBI) models that both phosphorylated connexin 43 (p-Cx43) expression and exosome release were elevated in the hippocampus following TBI. The promoted exosome release depends on the phosphorylation of Cx43 and requires ERK signaling activation. Exosome treatment could partially restore the attenuated long-term potentiation. Our results provide new insight for future therapeutic direction on the functional recovery of TBI by promoting p-Cx43-dependent exosome release but limiting the gap junction-mediated bystander effect.

Funder

Outstanding Medical Talent Traning Project of Health System of Pudong New Area, Shanghai

The Science and Technology Committee Project of Pudong New Area, Shanghai

Construction Specialty Project of Health and Family Planning Commission of Pudong New Area, Shanghai

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3